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Abstract

We explain, compare and improve two algorithms to compute American
or Bermudan options by Monte-Carlo. The first one is based on threshold
optimisation in the exercise strategy (Andersen 1999). The notion of ”fuzzy
threshold” is introduced to ease optimisation. The second one uses a linear
regression to get an estimate of the option price at intermediary dates and
determine the exercise strategy (Carriere 1997, Longstaff-Schwartz 1999).
We thoroughly study the convergence of these two approaches, including a
mixture of both.

1. Introduction

American and Bermudan option pricing in a Monte-Carlo framework is, in theory,
impossible because it requires the value of the option at intermediary dates — in
order to decide whether to exercise or to keep it — an information that is usually
not provided. Actually, rather than the value of the option, one needs an optimal
exercise strategy, that is, for each trajectory, an ”optimal” date when to exercise
the option.

In this situation, the word ”optimal” means that it maximizes the price of the
option — which is computed as usual by averaging the pay-out, including early
exercise — among all "acceptable” strategies (probabilists use the word adapted).
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A strategy is acceptable if the decision to exercise or not only depends on the
available information and not on the future of the trajectory. For instance, it is
not acceptable to exercise the option at the maximum of its exercise value along
the trajectory, because at a given date ¢, one doesn’t know whether the trajectory
is at its maximum. It is easy to check that pricing a standard American put
according to this principle would lead to much too high a value.

Dynamic programming theory works backwards in time, starting from the
maturity of the option. Let 71, ....T,, be the exercise dates (where T, is the option
maturity). One first determines the optimal exercise strategy at date T,—; . This
strategy should only depend on the state of the market at this date, therefore
there exists a criterion ®,,_;(xy, ..., Z,,), where the x; are the market variables at
date T),_1, such that exercise should occur whenever ®,,_; > 0 and the option be
kept until maturity in the other case. The zero-set' of ®,_; is called the exercise
boundary. The optimal criterion is not unique because only its sign matters. Any
other criterion that always has the same sign (hence zero-set) would fit. Once
the optimal ®,,_; is found, one determines the optimal exercise strategy at T, o
by assuming that, is the case the option is kept, then exercise occurs at 7, _;
according to the already computed criterion ®,,_;, and so forth.

It is important to notice that, at any date T} , the optimal exercise criterion ®y
does not depend on whether the option can be exercised before T}, or not. Only
exercise afterwards matters. A possible exercise criterion is simply the difference
between the exercise value and the option price when ignoring immediate exercise
possibility.

In this note, we first describe a general technique to compute optimal exercise
criterions. This technique requires a multi-dimensional nonlinear optimizer. We
then mention a simplified version of it, described in Andersen [1, 1999], which
only needs one-dimensional optimization.? The notion of ”fuzzy threshold” is
introduced in sect. 3.2, in order to ease the optimization. The next section is
devoted to an algorithm of Carriere (see [2, 1996]), enhanced by Longstaff and
Schwartz (see [3, 1998]), based on an approximation of the option price. Finally,
we develop our current approach, which uses Longstaff-Schwartz as a starting
point, then applies the first technique to improve accuracy.

As, generally speaking, this type of algorithm is rather time consuming, we
shall insist on the gradation of complexity with respect to accuracy, in order to
let the user chose between a ”quick and dirty” price and a more accurate one, but

!The set of all (z1, ..., T ) such that ®,,_1(x1, ..., Tm) =0.
2This approach was first mentioned to me in an oral communication by B. Dupire in 1996.



longer to compute.
A general overview of the literature on the topic can be found in Dupire [4,
1998], where several seminal articles are fully reproduced.

2. General Approach to Optimal Exercise

2.1. Theory

Let X(t) = (X1(t), --., X;n(t)) be the random process followed by market variables
Z1, ..., T, and r(t) be the short rate process (possibly random). The actualization
factor A(t,T) is defined by:

AwT) e (- [ " r(s) is)

This actualization factor is the actual discounting on the period [t,T|, which is
only known at the end date T, and should be distinguished from the discount
factor DF(t,T), which applies the corresponding rate as known at date t. In fact,
in the risk-neutral probability, one has:

E,[A(t,T)] = DF(t,T)

The ezercise value Vi(xy, ..., Zr) is the amount provided by the option if ex-
ercised at date Ty in the case X(T}x) = (x1,...,zx). If & = n, this is the option
pay-out. In this note, we assume that Vj is a known function of market vari-
ables z1, ..., x, . In particular, compound options, which, when exercised, lead to
another option of a lesser ”compounding degree” are excluded (see remark 3).3

If the option bears no other cash flows than when exercised, its value at date
t is:

Pt)=E; | > Alt,T) e(X(Tk)) Lir=m,)
T, >t

where T is the optimal exercise date, characterized as the first date T}, at which the
criterion ¥y, is nonnegative, or T, if they are all negative (7 is of course trajectory

3 An example of such options is a cap one can enter at times T, ..., T;, with a strike equal to the
current Libor, plus a fixed spread. A more complex option, that is, with a higher ” compounding
degree”, is a cap with n settlements out of which only m < n can be exercised, with discretionary
choice.



dependent). In general, one should add the discounted value of extra cash flows,
conditioned by the existence of the option at the corresponding date:

P(t) =E, Z A(t’ Tk) (Vk(X(Tk)) l{T:Tk} + Fy 1{T>Tk})

Ty, >t

where Fy, is the sum of cash flows that occur at dates T € (T}, Tk+1] discounted
to T}, (i.e. multiplied by A(T},T) ), assuming the option hasn’t been exercised at
T}, or before. These cash flows are assumed not to depend on market variables at
all or, at most, on the knowledge of market variables at date T} .
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Remark 1. In practice, if they do depend on market variables at date T > Tj,
but do not bear a strong convexity — such as non capped or non floored rates —
then they can be replaced by their discounted expectation (or forward value) at
Tx . The same remark applies when the actual discounting A(T},T) depends on
market variables posterior to Ty, .

In order to ease notations in an already complicated setting, intermediary
cash flows F}, will be omitted in the sequel. We shall reintroduce them in the last
section where the algorithm is described (see sect. 6).

In this context, the exercise date 7 is optimal in the sense that it maximizes
the price P(t) among all acceptable exercise strategies, where acceptable means
that exercise decision is taken under the only knowledge of available data at the
current date.

Let the holding value Hy(zy, ..., Z,) be defined by:

Hi(@1, -, m) =By | S AT, T) Ve(X(T) Lirry | X(T) = (21, -, 5)
l=k+1




that is, the value of the option at date T}, and market variables X(7y) = (21, ..., Zm),
when assuming no immediate exercise. One has:

P(Tk | X(Tk) = (:Ul, . ,:vm)) = max(Vk(:El, vy :Um), Hk(:pl, ceny :Um))

and a possible criterion ®; is the difference Vi, — Hj . The whole difficulty of the
Monte-Carlo framework resides in the fact that Hy is not known (except when
k=n-1).

Remark 2. Thanks to the Bayesian rule, if exercise is forbidden in the window
[to, t] then:
P(to) = By, [A(to, t) P(t)]

therefore, P(ty) is maximal whenever P(t) is, and the optimal exercise strategy
after date t does not depend on whether the option can be exercised before t or
not.

This remark justifies a backward induction on k to compute the exercise cri-
terions @, . Fix a date T} and assume that exercise criterions ®;,, ..., ®,_; have
already been computed. Then define the optimal exercise date 7 > Ty, as given
by criterions ®,, k+1 < £ < n — 1. According to the Bayesian rule, the criterion
®;. will be a function of market variables (X;(T%), ..., X;n(Tkx)) which maximizes
P(Ty), but also P(ty) when ignoring possible exercise at dates T3, ..., Tx—1 . This
criterion determines when 7 = T and when 7 > T}, ;. The backward induction
process then may go on.
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Remark 3. Compound options are handled by performing several times the
backward induction. Every induction processing is used to provide the exer-
cise value of the next processing. From the algorithmic point of view, induction
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processing of different compounding levels can be performed all at once. This
simplifies the procedure but does not reduce the amount of computation.

Remark 4. American options are treated as Bermudan ones with narrowly sam-
pled exercise dates.

2.2. Monte-Carlo Sampling

In a Monte-Carlo framework, expectations are replaced by averages over the paths.
Let N be the number of paths, which we denote by x;(t) = (z1,(t), ..., Tm;(t)), j =
1,...,N. Let also A;(t,t') be the actualization factor to apply over the period [¢t, ]
in path j (the short term interest rate r may differ from one path to another).
For a given exercise strategy, that can be characterized by a sequence of criterions
¢ = (Pq,...,P,), one can deduce, for each path j, an exercise date 7¢(j). This is
simply the first date T} at which ®; > 0 on the path. The corresponding option
value is:

Pa(to) = 1 As(to, 79(7)) Vet (5 (72(4)

j=1
The temptation is to maximize Ps(to) over all possible sequences of criterions
(®1,...,9,) . Then the algorithm goes as follows:

1. For a given criterion ®,,_; at date T,,_;, define 7,,_;(j) to be either T,,_; if
®,_1(x;(T5—1)) > 0 or T, otherwise. Then set:

Pt t0) = 7 D Ao Tacs (1) Ve (5 (raca (1)

= % Z Aj(tO,Tn—l)Vn—l(xj(Tn—l))

<I>71—120

_*_% Z Aj(to,Tn) Vn(xj(Tn))

<b'n—l <0

2. Parameterize ®,_; as a function of x;(7},—) and find the parameters that
maximize P,_1 s, ,(to)-

3. Once ®,,_; is known, take the exercise strategy at 7, _; for granted and
resume the procedure with ®,,_,, etc. until date 77 .
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There are two major problems. The most obvious is complexity. If we deal
with 10 market variables and we want ®; to be a 4'® degree polynomial in these
variables, we speak of several thousands of coefficients to optimize, and the price
P, 14, ,(to) depends in a highly non quadratic manner in these coefficients. Such
an optimization problem, that must be solved at each possible exercise date, is
out of scope.

The second one is more subtle. If criterions ®; are too accurate, then as we
optimize the actual pay-out of each single trajectory, we are actually cheating by
using information from the future, supposedly not known. Therefore there ap-
pears a kind of race between the degree of flexibility of criterions and the amount
of Monte-Carlo paths. Intuitively, the number of paths must remain large with re-
spect to that of parameters, inducing a lower bound to complexity. Both questions
will be assessed in the sequel.

A third difficulty is the non smoothness of the function to be maximized. We
shall also provide a solution to this problem (see sect. 3.2 on ”fuzzy threshold”).

3. The Exercise Value Threshold Method

3.1. Optimal Threshold

The following technique is described in Andersen [1, 1999]. In order to bound
complexity, as well as avoid using future information in a forbidden way, criterions
®;. only depend on the exercise value Vi (x;(7%)) . Hence, the exercise criterion is,
at each date T}, , determined by a threshold 6y, : exercise occurs as soon as Vi, > 0.
The value of the threshold is that which maximizes the function:

¥(0) = Pro(to)

where Py q(to) is the value of the option at ¢, when exercise at T}, is given by ¢
and exercises afterwards are given by the optimal 04, ...,0,_1 .

There are many efficient algorithms the maximize a function of just one vari-
ables. We warn the reader that, in the present situation, this function v has
bad features. First it is not smooth, because changing the threshold by a small
amount can make a trajectory suddenly exercised at 7} , hence possibly change
the pay-out of the precise trajectory by a big amount, albeit dumped by the 1/N
factor. The second problem is asymptotic values when 8 — 0 or § — +00. In the
first case, the option is always exercised, hence it is similar to an European option
maturing at 7. In the second case, the option is never exercised at 7} and its
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price is P11, (to). These two values, and especially the second one, are often
very close to the maximum. It is not totally absurd to simply scan the real axis
(within reasonable bounds) and pick the maximum value.

The following graph shows the shape of function 1 in the case of a standard
European put on a stock (one year, 40% volatility, 10% interest rate), with possible
exercise at mid-maturity. One can observe the irregularities mentioned above. The
left hand side asymptotic value is the price of a 6 months European option, the
right hand side one is that of a 1 year European option.
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The limitation of this approach is that, when the number of paths tends to infinity,
it converges to a lower value than the correct one. Indeed, the exercise strategy
is sub-optimal, because it uses only partial information. When the underlying
is only one-dimensional (as in the example above), then it does converge to the
true price, as information is totally contained in the exercise value. However, for
basket options, stochastic volatility models, interest rate options, etc. one can
expect a negative bias in the Monte-Carlo price. If, mostly, one underlying price
or rate matters, as it is the case with Bermudan swaptions, then it seems that the
bias is not larger than the Monte-Carlo noise. The graph in sect. 5 shows a 10%
downward bias in the early exercise premium of a ”best of” option on a pair of
uncorrelated stocks.




3.2. Fuzzy Threshold

Theoretically, there exists for each exercise date — and for each date in the case of
an American option — an optimal exercise boundary. Beneath the boundary, the
option should be kept and beyond, it should be exercised. By no mean should the
decision involve any type of randomness. However, in the Monte-Carlo framework,
the criterion 1 to be optimized is not smooth. The solution is to ignore the
”all or nothing” rule and introduce ”exercise probabilities”. At a given exercise
date T} , each path x; is exercised with probability px; and kept with probability
1 — px; . Then the ”portion of trajectory” that is not exercised eventually follows
the exercise strategy defined by the backward induction.

In practice, assume that probabilities py; have been determined for all £ > k
and define:

Pe; = (1 — prg1j) - - - (1 — De—15) Pej

The ”holding value” of trajectory x; at date Tj, is:

ﬁkj = Z Dej Aj(Ty, Ty) Vi
t=k+1

where
Vij = Vr,(x;(T2))

The quotes on ”holding value” and the hat on ﬁkj come from the fact that the
expectation has been omitted. The value Hj; summarizes the true future history
of trajectory x;. In particular, the following induction formula holds:

ﬁk—lj = A(Tx—1,Tk) (pkj Vii + (1 — pij) ﬁkj)

The ”fuzzy threshold” technique consists of setting exercise probabilities as fol-
lows:

Prj = N(Vaj — 0)

where 7 : R — [0, 1] is smooth, increasing and satisfies:

lim n(s) =0 liI_P n(s) =1
For example:
(s) !
S) =
Na 1 e—as



where the parameter a measures the ”fuzziness” of the threshold. A non fuzzy
threshold corresponds to a — +00.
The new ”fuzzy criterion” ), is defined by:

Val0) = 5 D Alte,Te) (pis(0) Vi + (1 = pg(0)) iy )

where
Pri(0) = 1o (Va; — 0)

This is a smooth function of the ”threshold” 6 because each single probability
pk;(6) depends smoothly on §. It tends to the non fuzzy — and non smooth —
criterion ¢ when o — +o00.

The following graph shows functions ¢ and v, in the same setting as previously
with different values of « .
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One sees that, if « is too small, then either ¢, does not have a maximum, or it is
far away from the correct value. However, an appropriate parameter o smoothes
the criterion without incuring bias in the result.
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4. The Carriere-Longstaff-Schwartz Approach

4.1. Linear Regression

J.F. Carriere’s approach [2, 1996], improved by F. Longstaff and E. Schwartz [3,
1998], goes back to one of the definitions of criterions ®; as the difference between
the exercise value V}, and the holding value, that is, the option ”net present value”
if not exercised, denoted Hy, :

O (X(Tx)) = Vi(X(Tk)) — Hr(X(Tk))

As mentioned earlier, the problem is that Hj, is not known. Nevertheless, like any
option price, it should depend smoothly on variables X;(7%), ..., Xm(T%), thus it
can be approximated by a polynomial of these variables, or any type of expansion
in ”basic functions”, which we shall call fi, ..., f; :

Hy(X(Tx)) = Ao + Z i fi(X(Tx))

The number ¢ of basic functions can potentially be much larger than the number
m of variables (if these are all polynomials of degree at most d, then it is of the
order of m?/d!). As no exercise can occur between Ty and Ty, ; (in the American
case, we assume Ty to be sufficiently close for this approximation), one has:

Hy(X(Ty)) = En,

> AT, Ty) V(X (T2)) 1{T=Te}]

£=k+1

Therefore, the difference:

Er,

Z A(Ty, Ty) Vo(X(T)) l{TZTg}] - Z i fi(X(Tk))

£=k+1

should be made as small as possible.

In the Monte-Carlo setting, where expectations are replaced by averages, this
will be achieved by a linear regression. As in the previous section, we define
T7(j) = Try1(J) to be the exercise time of the option, as known at Ty, ;. The
actual discounted pay-off of each trajectory j is:

Hy(5) = A(Te, 7(5)) Vo) (%5(7(4)))
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The difference with its expectation at 7T} should be independent of variables
X1(Ty), .., Xm(Tk), hence of any function of these, in particular basic ones fi, ..., f; .
One performs thus a linear regression of the array Hy(j) with respect to arrays

filx;(T), i=1,...,q:

Hi(j) = X+ Z Aifi(x;(Tk)) + Z(7)

i=1

where the remainder Z(j) is decorrelated from f;(x;(7%)), ¢ =1, ...,q. Then set:

Bp(x) = Vi(x) — Ao — Z i fi(x)

A possible improvement of this method is, after the first run, to perform a second
linear regression that is weighted to augment the importance of trajectories close
to the exercise boundary that has been found by the first regression.

The convergence behaviour of the algorithm is as follows. For a given set of
basic functions, when the number of paths tends to infinity, the price converges to
a sub-optimal price, because the exercise strategy is forced to depend linearly on
basic functions of rates (albeit less sub-optimal than in the exercise value threshold
method). On the other hand, for a ”low” number of paths, we face the second
problem mentioned in sect. 2.2 and the option is, on the contrary, overpriced.
As the number of path increases, one can see the price going from much too
high to slightly too low, the words "much” and ”slightly” being strengthen when
the number of basic functions increases. Eventually, when the number of basic
functions itself tends to infinity, but the number of Monte-Carlo paths tends
even faster to infinity (probably at least like the square of the number of basic
functions), then the limit is equal to the true Bermudan premium. This is shown
in the following picture, which graphs the early exercise premium of an American
option on two stocks with pay-off max(K — max(S, S2),0).
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Early exercise premium in percentage of notional (assumed equal for the two
stocks). Vol(S1) = 20%, Vol(Ss) = 25%, p =0, r = 5%, 10 exercise dates. The
” American” price is an estimation, because no benchmark is available.

Remark 5. Let P.(j) = Ao+ >, X\ifi(x;(Tk)) - This is what the model assumes
to be the option price at date Tj, for trajectory x;. One could be tempted to
replace the regression of ﬁk(j) by that of A(Ty, T,H_l)f’k_,_l (7), which stands for
the discounted pay-off if the option is sold back on the market at Ty, . This
change (which looks like a simplification but, in fact is not) introduces important
biases and should be avoided. What happens is that P (7) is close to the option
price when x;(T}) is close to its expectation, but it may be in average far away
when it is close to the exercise boundary, where the comparison with V}, matters.

4.2. Choice of Basic Functions

It is often a good idea to include, when possible, V; as one of the basic functions.
If this is the only one, then we are in the threshold situation, although the linear
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regression does not necessarily provide the optimal threshold. Generally speaking,
let f; =V} and assume that \; ~1. Then ®; can be replaced by:

Qp(x) = Vi(x) — Ao — Z Aifi(x)

where \; = \; / (1 — );1), i =0,2,...,q. In general, the option value if not exercised
makes a narrow angle with the exercise value along the exercise boundary (in the
limit case of American options, theorems by Shiryaev and by McKean, known as
”pasting conditions”, state that the two surfaces are tangent along the exercise
boundary). This usually implies a value of A; close to 1. The criterion @y is almost
degenerate near 0, but ®;, isn’t because of the large coefficient 1 /(1 — ;) .

The choice of other basic functions is, in practice, less sensitive a matter than
one could expect. Simple monomials such as z%z5... provide a very good set of
basic functions, on top of the constant A\g and the exercise value V. A higher
degree provides greater flexibility for, obviously, a higher complexity. In order to
master the number of basic functions, while allowing flexibility, the following rule
can be applied: select, for each index ¢ a maximum degree for the variable z; , say
d; . A monomial z¢z5... is selected as a basic function if its total degree a+b+... is
not greater than each degree d; for which the variable x; appears in the monomial
(asking only that the exponent of z; be not greater than d; would lead to too
many basic functions). For example, if d; = 1 and dys = 2 then monomials z;, x5
and z3 are accepted but not z,z, , which has total degree 2 > d; .

5. Combination of the two methods

The Longstaff-Schwartz technique is inaccurate for a low number of paths but,
for a high number, it is slightly biased downwards because the exercise strategy
is not optimal. It is possible to combine the two above techniques to shrink down
this bias. Select some of the coefficients \; , i € J, where J is a subset of {0, ...,q}
and, at each step, modify the values provided by Longstaff-Schwartz by amounts
€i, ¢ € J chosen to maximize the discounted expectation at t,. More precisely,
consider one of the exercise date T and let € = (g;);c; . Define 1, (¢) as the option
value at t; if exercise at 71, ..., Ty is not allowed, exercise at Tk 1, ..., 15, is given
by formerly determined values of )\; and exercise at T} is given by criterion ®y
where J\; is replaced by \; +¢; , whenever ¢ € J . Standard optimization techniques
provide the optimal vector €, = argmax1), or, equivalently, the optimal set of
coefficients (A, ..., Ay) , in the sense that only indices in J are optimized.

14



Remark 6. The ”fuzzy threshold” technique can be applied in this context to
obtain a smooth function v, which, in general, is not.

The next graph shows the valuation of an option on two stocks S; and S,
with payoff max(K; — S1, Ka — Ss,0) and 10 possible exercise dates 71, ..., Tio . In
fact, only the early exercise premium (i.e. the difference between the European
and the Bermudan option) is displayed. Three series of valuation are shown. The
first one is the Longstaff-Schwartz method as explained in the previous section,
referred to as LS. The second, referred to as Optim, optimizes all coefficients \;
at every step. In the third one, referred to as Paral for ”parallel shift”, only
Ao is optimized, but A, ..., A, keep the values provided by the linear regression.
Needless to say that the third technique is much faster and robust than the second
one — one-dimensional optimization can be made extremely efficient, especially
when the shape of the function is known — although it seems to provide very
similar results. Basic functions are SfS;’, a + b < d where the degree d is an
input. With the above notations, this would correspond to d; = dy = d. For each
series of simulation, the standard deviation of the result is displayed (obtained by
repeating the simulation several times).
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One sees that, for each degree d, there is a critical number of paths N(d) for which
the estimation is unbiased. For a given option that we may have to compute
several times, but with not a high accuracy, one can first estimate N(d) by a
thorough simulation and, for future evaluation, only use basic functions up to

degree d and simulate only N(d) paths.

6. Practical implementation

The algorithm explicited in this section combines both ”regression” and ”optimal

threshold” approach, and uses the ”fuzzy threshold” technique.
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. Let tq,...,tx be the diffusion sample dates and Ti,...,T,, be the exercise
dates. At each t; some cash flow may occur, with an amount depending
on the sample path. We first add, for each exercise date T}, all cash flows
occurring at t; such that T < t; < Tyy1, discounted from ¢; to Ty and we
call F'(j, k) the array of such cash flows, where j is the path index.

. Load the array A(k,j) of the actual discounting factors from ¢y to T} in
path j.

. For each T} and each path j, we compute V (j, k), the exercise value if the
option is exercised at date T} in the path j.

. Start from the one but last date 7,,_; and load arrays of basic rates R;(j)
and compute basic functions:

fq(j) = fq(Rl(j)a "'aRl(j)) , gq=1,...m

up to the desired degree. Set when possible:
o)) =V(n-1)
. Regress the ”holding value”:
H(j,n—1) = F(j,n 1)+ V(j,n) A(4,n) / A(j;n = 1)
over arrays f,(j), ¢ =0, ..., m (including the exercise value, denoted fj ).

. Let Ao, ..., Ay be the regression coefficients and p be the constant and define
the conditional expectation:

E(j,n—1) :N‘*‘Z)‘qfq(jan_ 1)

. Define the exercise probability:

p(]an - 1) = na(v(jan - 1) - E(Jan - 1))
where « is the fuzziness parameter of the threshold.

. Define the Bermudan value:
P(Jan_l) :p(.]an_ 1)V(Jan_ 1)+(1 _p(jan_ 1))H(Jan_ 1)

17



9. Optimize over desired p, A1, ..., Ay, the price at £ :

Py(n—1)= %ZA(j,n— 1) P(j,n—1)

10. Repeat procedure for k =n — 2,...,0.

Remark 7. For compound options, the exercise value V (j, k) should be replaced
by the price P'(j,k) of the option with one level less of compounding (i.e. the
option one gets when exercising the compound option).
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