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Abstract. We propose a methodology for estimating hedge fund risk, which
consists of two steps: first, regressing the return on non-linear functions of each sin-
gle factor and second, merging together the obtained estimates taking into account
the dependence between different factors. This enables us to use as a lever the fact
that we have more information on factors than on hedge funds. As a by-product,
we obtain a new approach to non-linear hedge fund replication.
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In order to assess the risk of a hedge fund, one could simply estimate some risk measure (for
example, standard deviation or Value at Risk) using its return history. A deeper approach,
however, would be to relate the hedge fund return to risk driving factors like equity,
bond, currency, commodity, and volatility indices, credit spreads, etc. This provides the
advantages of:

• taking into account predictions about the future moves of the factors;
• using the long time series available for factors and thus providing more accurate

risk predictions;
• estimating the joint risk of different hedge funds, i.e. estimating the risk of portfolios

of hedge funds;
• the possibility of extrapolating back the hedge fund history, using the data for the

factors.

The most classical approach to relating hedge fund returns to risk factors is the linear
regression on a collection of factors. This is closely connected with hedge fund replica-
tion (see Fung and Hsieh, 1997a, Hasanhodzic and Lo, 2007). However, the findings of
Hasanhodzic and Lo (2007) show that such a method explains only 15–20% of variance
(i.e. risk) in individual hedge fund returns. One of the reasons is the well-recognized
non-linearity in the dependence of hedge fund returns on the factors (see Agarwal and
Naik, 2004, Fung and Hsieh, 1997b, 2001, Lo, 2001).

In order to capture this non-linearity, one might take options on factors as additional
factors, as is done in Agarwal and Naik (2004). However, the following problem then
arises. The hedge fund returns typically have quite a short observation history; for ex-
ample, if a fund has a 2-year history, then we will have two dozens of observations of its
return. On the other hand, the number of non-linear factors might well exceed the num-
ber of observations, and then it is impossible to do the regression of the return on all the
factors due to overfitting. One way to overcome this problem is to extract from the fac-
tors a few relevant ones and thus avoid overfitting. For this, one might use some “blind”
method such as “stepwise regression” or “matching pursuit”. For example, Agarwal and
Naik (2004) choose as the factors one index and four options on this index.

In this paper, we propose another way to regress the return on the collection of non-
linear factors. Let R denote the hedge fund return over a fixed time period andX1, . . . , XN

be the increments of factors over the same time period. The methodology we propose
consists of two steps:

1. Regress the return on the non-linear functions of each single factor, i.e. for each
n = 1, . . . , N , find the best approximation of R by a sum of the form

ϕn(Xn) = an + bnXn +
In∑

i=1

cni(Xn −Ki)
+, (1)

where K1, . . . , KIn
are some chosen strikes of traded call options on Xn.

2. Join together the functions ϕ1(X1), . . . , ϕN(XN), taking into account the depen-
dence between the factors, to produce a non-linear approximation of R by a function
of all factors.

The methodology for Step 1 is clear: we perform simply a linear regression of R on a
factor and a family of options. The methodology for Step 2 is not obvious since different
factors are dependent. Performing Step 2 is the main objective of this paper.
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To conclude the introduction, let us mention two advantages of the proposed method
over the method of choosing few relevant factors:

• When performing Step 2, we are taking as an input the joint distribution of
X1, . . . , XN estimated from the long time high-frequency time series available. In
contrast, when regressing the return on the set of relevant factors, one would take
only the monthly increments of factors, and only for the period of the fund history.
Thus, we use as a lever the fact that we have much more information on factor
history than that of the fund.

• We use the known structure of the factor set, namely the fact that cells are made
of non-linear versions of the same factor. This allows to avoid accidental factors
that might arise when using “blind” factor selection methods.

Let us also mention two nice features of the approach we are proposing, of which more
will be said later:

• The solution we obtain has the form of a sum of functions of single factors, which
provides a new approach to non-linear hedge fund replication.

• The solution is linear in R, so that if one has performed Steps 1–2 for each single
hedge fund, he/she gets free the solution for any portfolio of these funds. This
makes the approach convenient for measuring the risk of hedge fund portfolios and
hence, for constructing optimal ones, which is the fund of funds problem.

Mathematical Formulation

Let us formalize the problem of Step 2. We are given an N -dimensional probability den-
sity p(x1, . . . , xN), which is the joint density of X1, . . . , XN . We are also given non-linear
functions ϕ1(X1), . . . , ϕN(XN) meaning the best non-linear approximations of the hedge
fund return by functions of each single factor.1 The problem is to recover from this infor-
mation the best non-linear approximation of R by a non-linear function ϕ(X1, . . . , XN)
of all the factors.

First, let us establish the relationship between ϕ and each ϕn. If ϕ(X1, . . . , XN) is
the result of the non-linear regression of R on all the factors, then ϕn(Xn) should be the
result of the non-linear regression of ϕ(X1, . . . , XN) on the n-th factor. This means that
the function ϕn should deliver the minimum in the optimization problem

∫
. . .

∫ (
ϕ(x1, . . . , xN) − ψ(xn)

)2
dx1 . . . dxN −→ min,

where the minimization is over all the non-linear functions ψ(xn). Throughout the paper,
all the limits of integration are from −∞ to +∞, and we will skip them. The solution to

1Functions ϕn are closely connected with factor risks introduced independently in literature by Cherny
and Madan (2005) and in the industry by Risk Data.
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the above problem has a well-known form, so we get the equation2

ϕn(xn) =

∫
. . .

∫
ϕ(x1, . . . , xN)p(x1, . . . , xN)dx1 . . . dxn−1dxn+1 . . . dxN∫
. . .

∫
p(x1, . . . , xN)dx1 . . . dxn−1dxn+1 . . . dxN

. (2)

In other words, the information we have about the unknown function ϕ is its integrals
over the hyperplanes orthogonal to the coordinate axes.

This information is however insufficient to recover the function ϕ. As an example, let

p(x1, x2) =
1

2π
exp

{
−x

2
1 + x2

2

2

}

be the standard Gaussian density in the two-dimensional space and consider ϕ1(x) =
ϕ2(x) = 0. Then both functions ϕ(x1, x2) = 0 and ϕ(x1, x2) = x1x2 satisfy (2). It is clear
that the non-uniqueness effect will be present for any natural p.

In order to get a unique solution, one should impose additional restrictions on the
unknown function ϕ. We are proposing to look for a function, which is “the most moderate
one” as measured by its second moment. Then the problem becomes





∫
. . .

∫
ϕ2(x1, . . . , xN )p(x1, . . . , xN)dx1 . . . dxN −→ min,

ϕ satisfies (2) for any n.

(3)

Gaussian Distribution

In this section, we present an explicit solution of (3) for the case when p is the density of
a non-degenerate Gaussian distribution. We will assume that, for any n,

∫
. . .

∫
xnp(x1, . . . , xN)dx1 . . . dxN = 0, (4)

∫
. . .

∫
x2

np(x1, . . . , xN)dx1 . . . dxN = 1. (5)

This is sufficient for applications since the main application we have in mind is the Gaus-
sian copula, and it can always be transformed into such a density p. We will denote by C
the covariance matrix of p, i.e.

Cnk =

∫
. . .

∫
xnxkp(x1, . . . , xN)dx1 . . . dxN .

2Another way to explain this equation is as follows. The best non-linear estimate of R by Xn is given
by the conditional expectation

ϕn(x) = E[R |Xn = x];

the best non-linear estimate of R by all X1, . . . , XN is the conditional expectation

ϕ(x1, . . . , xN ) = E[R |X1 = x1, . . . , Xn = xn].

Using now the tower property of conditional expectations, we arrive at (2).
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If functions ϕn satisfy (2), then

∫
. . .

∫
ϕn(xn)p(x1, . . . , xN )dx1 . . . dxN

=

∫
. . .

∫
ϕ(x1, . . . , xN)p(x1, . . . , xN)dx1 . . . dxN .

Hence, a necessary condition for the existence of a solution of (3) (which is now assumed
to hold) is that there exists a constant E such that, for any n,

∫
. . .

∫
ϕn(xn)p(x1, . . . , xN)dx1 . . . dxN = E. (6)

Recall that the Hermite polynomials are defined recurrently as: H0(x) = 1,

Hn(x) =
1√
n

(
xHn−1(x) −

d

dx
Hn−1(x)

)
, n = 1, 2, . . . .

As an example,

H1(x) = x,

H2(x) = (x2 − 1)/
√

2,

H3(x) = (x3 − 3x)/
√

6,

H4(x) = (x4 − 6x2 + 3)/
√

24.

Consider the values (anm, n = 1, . . . , N, m = 1, 2, . . . ) defined as

anm =
1√
2π

∫
ϕn(x)Hm(x)e−x2/2dx.

Denote by Cm the m-th componentwise power of C, i.e. Cm
nk = (Cnk)

m. It is known that
this matrix is non-degenerate.3 So, we can find the values (αnm, n = 1, . . . , N, m =
1, 2, . . . ) defined through the following linear systems:





Cm
11α1m + · · · + Cm

1NαNm = a1m,

. . .

Cm
N1α1m + · · · + Cm

NNαNm = aNm.

Theorem 1. The solution of (3) is unique and is given by

ϕ(x1, . . . , xN) = E +
N∑

n=1

∞∑

m=1

αnmHm(xn).

3A result going back to Jacobi states that if (Ank)N
n,k=1

and (Bnk)N
n,k=1

are symmetric positively defi-

nite non-degenerate matrices, then their componentwise product (AnkBnk)N
n,k=1

has the same properties.
For a simple probabilistic proof, we refer to Cherny, Douady, and Molchanov (2008).
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The proof is given in the Appendix.

Let us now consider a particular case when each ϕn is linear. In view of (4) and (6),
this means that ϕn(x) = E + anx with some constants E, a1, . . . , aN . It is well known
that Hermite polynomials have the property

1√
2π

∫
xMHm(x)e−x2/2dx = 0 for m > M.

Therefore, we get from Theorem 1

Corollary 1. If ϕn(x) = E + anx, then the solution of (3) is given by

ϕ(x1, . . . , xN ) = E +
N∑

n=1

αnxn,

where α1, . . . , αN are found through the system






C11α1 + · · ·+ C1NαN = a1,

. . .

CN1α1 + · · · + CNNαN = aN .

More generally, we get

Corollary 2. If each ϕn is a polynomial of degree M , then the solution of (3) is

given by

ϕ(x1, . . . , xN) = E +
N∑

n=1

M∑

m=1

αnmHm(xn).

Corollary 1 shows that in the Gaussian case our technique is consistent with the
linear regression technique. Namely, consider random variables R,X1, . . . , XN , where
X1, . . . , XN have the joint density p satisfying the conditions of this section. Then the
linear regression of R on Xn is given by the function ϕn(x) = E + anx, where E = E[R]
and

an =
E[RXn]

E[X2
n]

= E[RXn].

The linear regression of R on all X1, . . . , XN is given by

ϕ(x1, . . . , xN ) = E +
N∑

n=1

αnxn,

where αn are exactly the same as in Corollary 1. In other words, if X1, . . . , XN are jointly
Gaussian, then the linear regression estimate of R by X1, . . . , XN can be recovered from
the one-dimensional linear regressions, and our technique does this in particular.
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Gaussian Copula

Let us now consider the case when the density p corresponds to a Gaussian copula, i.e.
there exist strictly increasing functions fn such that the vector

(X̃1, . . . , X̃N) = (f−1

1 (X1), . . . , f
−1

N (XN)) (7)

has a Gaussian density p̃. Conditions (4), (5) imposed on p̃ mean that EX̃n = 0 and

EX̃2
n = 1, from which the functions fn are determined uniquely. Denote

ϕ̃n(x) = ϕn(fn(x)).

It is clear that a function ϕ(x1, . . . , xN ) solves (3) if and only if the function

ϕ̃(x1, . . . , xN) = ϕ(f1(x1), . . . , fN(xN ))

is the solution of (3) corresponding to p̃ and ϕ̃1, . . . , ϕ̃N . The latter solution has been
given above.

So, the proposed methodology of hedge fund risk estimation in the case when the joint
law of the factor increments X1, . . . , XN is described by a Gaussian copula, consists of
the following steps:

1. Do linear regression (1) of R on each factor and some options on the factor to obtain
a non-linear estimate ϕn(Xn).

2. Estimate from the time series of factors the joint density p(x1, . . . , xN ) of
X1, . . . , XN and find the functions fn such that the random vector (7) has a joint

Gaussian density with E[X̃n] = 0, E[X̃2
n] = 1.

3. Fix a number M ∈ N (for example, 30) and find the coefficients (anm;n =
1, . . . , N, m = 1, . . . ,M) given by:

anm =
1√
2π

∫
ϕn(fn(x))Hm(x)e−x2/2dx.

4. Find the values (αnm;n = 1, . . . , N, m = 1, . . . ,M) by solving the linear systems





Cm
11α1m + · · · + Cm

1NαNm = a1m,

. . .

Cm
N1α1m + · · ·+ Cm

NNαNm = aNm,

where Cm
nk = (cov(X̃n, X̃k))

m.
5. Then the solution of (3) exists, is unique, and is given by

ϕ(x1, . . . , xN ) = E +
N∑

n=1

∞∑

m=1

αnmHm(fn(xn)),

where E is defined by (6). Then ϕ(X1, . . . , XN) is the proposed non-linear approx-
imation of R by a function of all factors.
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The above function ϕ is a sum of one-dimensional functions of single factors. So, our
approximation of R might be realized through a portfolio of single factors and options on
them. This is a very convenient feature as it provides a new approach to the non-linear
hedge fund replication.

Another nice feature of the proposed solution is the linearity in R. Let R1, . . . , RM

denote the returns of different hedge funds. Let ϕm
n (Xn) be the regression (1) for Rm.

Denote by ϕm(x1, . . . , xN) the above given solution of (3) corresponding to ϕm
1 , . . . , ϕ

m
n .

Consider now the return of a portfolio of the above hedge funds:

R =

M∑

m=1

µmRm,

where µ1, . . . , µM are positive numbers with
∑

m µ
m = 1. Then the regression (1) for R is

ϕm(Xn) =

M∑

m=1

µmϕm
n (Xn).

Clearly, the above solution of (3) corresponding to ϕ1, . . . , ϕN has the form

ϕ(x1, . . . , xN ) =
N∑

m=1

µmϕm(x1, . . . , xN ).

In other words, the solution of (3) corresponding to a weighted average of portfolios is
the weighted average of solutions corresponding to individual portfolios.4

Three Types of Risk

Let R,X1, . . . , XN be the same as above. Here we impose no assumptions on the density
of X1, . . . , XN . Let ϕn(Xn) be the best non-linear estimate of R by functions of Xn, which
is the conditional mean

ϕn(x) = E[R |Xn = x].

Although p is arbitrary, the solution of (3) will typically exist, be unique, and have the
form

ϕ(x1, . . . , xN ) =

N∑

n=1

hn(xn)

with some functions h1, . . . , hN ; see Cherny, Douady, and Molchanov (2008). As an
example, in the case of a Gaussian copula, the functions hn have explicitly been provided
in the previous section.

The function ϕ(X1, . . . , XN) obtained as the solution of (3) is not the true best non-
linear estimate of R by a function of all the factors. Indeed, we had to recover it from
the best estimates by each single factor, and the complete recovery is impossible, as

4Both the linearity in R and the fact that the solution of (3) is a sum of functions of single factors
are valid not only for a Gaussian copula but for any model; see Cherny, Douady, and Molchanov, (2008).
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discussed above. Therefore, the function ϕ(X1, . . . , XN) will be different from the true
best non-linear estimate ψ(X1, . . . , XN), which is given by the conditional mean

ψ(x1, . . . , xN) = E[R |X1 = x1, . . . , XN = xN ].

The latter function exists theoretically, but, as discussed in the introduction, it cannot
be estimated practically due to the lack of data. In order to understand better the
relationship between the above two functions, let us consider the decomposition

R = R1 +R2 +R3,

where

R1 = ϕ(X1, . . . , XN),

R2 = ψ(X1, . . . , XN) − ϕ(X1, . . . , XN),

R3 = R− ψ(X1, . . . , XN).

Proposition 1. The random variables R1, R2, R3 are uncorrelated.

The proof is given in the Appendix.

The function ϕ is a sum of monomials, i.e. functions of single variables x1, . . . , xN .
Therefore, we might say that the random variable R1 is responsible for the monomial

risk. The random variable R2 captures the non-linearity in ψ coming from the non-
monomial terms such as xnxk. So, we might say that R2 is responsible for the cross-term

risk. Finally, R3 captures the uncertainty in R not explained by X1, . . . , XN , i.e. R3

is responsible for the idiosyncratic risk. Thus, the above decomposition of R might be
interpreted as:

Risk = Monomial risk + Cross-term risk + Idiosyncratic risk.

In these terms, the topic of this paper is recovering the monomial risk.

Summary

We have proposed a new method for assessing hedge fund risk. It consists of: first, linearly
regressing the hedge fund return on each single factor and some options on it; second,
joining together the obtained non-linear estimates. An explicit way of doing that has
been provided for the case when the factors follow a Gaussian copula. The proposed
methodology led us to decomposing hedge fund risk into three components: monomial
risk, cross-term risk, and idiosyncratic risk. As a by-product, we have obtained a new
way of non-linear hedge fund replication. The method proposed is linear in the hedge
fund return, which makes it convenient for assessing the risk of portfolios of hedge funds.
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Appendix: The Proofs

Proof of Theorem 1. The well-known property of Hermite polynomials states that

E[Hm(Xn)Hl(Xk)] =

{
0 if m 6= l,

Cm
nk if m = l.

Hence, for any n, we have

E[ϕ(X1, . . . , XN)Hm(Xn)] =

N∑

k=1

Cm
nkαkm = anm = E[ϕn(Xn)Hm(Xn)], m = 1, 2, . . . .

The random variables H1(Xn), H2(Xn), . . . form an orthonormal basis in the space Ln,
which consists of random variables of the form f(Xn) with E[f(Xn)] = 0, E[f 2(Xn)] = 1.
So, we see that

PrLn
ϕ(X1, . . . , XN) = ϕn(Xn),

where “Pr” denotes the orthogonal projection. According to the known properties of
conditional expectations, this means that

ϕn(x) = E[ϕ(X1, . . . , XN) |Xn = x],

which is equivalent to (2).
In order to prove the L2-minimality of ϕ, take another function ϕ̃ satisfying (2) for

any n. Then
PrLn

ϕ̃(X1, . . . , XN) = ϕn(Xn) = PrLn
ϕ(X1, . . . , XN).

This means that the difference ϕ̃(X1, . . . , XN)− ϕ(X1, . . . , XN) is orthogonal to the sum
of spaces L1 + · · · + LN . On the other hand, ϕ(X1, . . . , XN) belongs to this sum. As a
result,

E[ϕ2(X1, . . . , XN)] ≤ E[ϕ̃2(X1, . . . , XN)],

which is exactly the minimality of ϕ we need.

Proof of Proposition 1. Without loss of generality, E = 0. A function ϕ̃ satisfies (2)
if and only if

PrLn
ϕ̃(X1, . . . , XN) = ϕn(Xn),

where Ln are the same as above. The definition of ϕn means that

ϕn(Xn) = PrLn
R.

Thus, a function ϕ̃ satisfies (2) if and only if for any n,

PrLn
ϕ̃(X1, . . . , XN) = PrLn

R,

which is, in turn, equivalent to:

PrL ϕ̃(X1, . . . , XN) = PrLR,

where L is the closure of the sum L1 + · · ·+LN . Now, it is clear that the solution of (3) is:

ϕ(X1, . . . , XN) = PrLR.
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From the well-known property of conditional expectations, we can write

ψ(X1, . . . , XN) = PrL′ R,

where L′ denotes the space of square integrable random variables of the form
f(X1, . . . , XN) with E[f(X1, . . . , XN)] = 0 and E[f 2(X1, . . . , XN)] < ∞. Clearly, L is
included in L′. Thus, we get

R1 = PrLR, R2 = PrL′ R− PrLR, R3 = R− PrL′ R,

from which the result is clear.
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