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Abstract We propose a methodology for estimating the risk of portfolios that exhibit
nonlinear dependence on the risk driving factors and have scarce observations, which
is typical for portfolios of investments in hedge funds. The methodology consists of
two steps: first, regressing the portfolio return on nonlinear functions of each single
risk driving factor and second, merging together the obtained estimates taking into
account the dependence between different factors. Performing the second step leads
us to a certain probabilistic problem, for which we propose an analytic and computa-
tionally feasible solution for the case where the joint law of the factors is a Gaussian
copula. A typical practical application can be to estimate the risk of a hedge fund or
a portfolio of hedge funds. As a theoretical consequence of our results, we propose a
new definition of the factor risk, i.e., the risk of a portfolio brought by a given factor.
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1 Introduction

1.1 Motivation

In constructing portfolios of hedge funds, which is the fund of funds problem, one
of the central tasks is to estimate the risk of a hedge fund or basket of hedge funds.
In order to estimate the risk of a hedge fund, one could simply estimate some risk
measure (for example, standard deviation or Value at Risk) using its return history.
A deeper approach, however, would be to relate the hedge fund return to risk driving
factors like equity, bond, currency, commodity, and volatility indices, credit spreads,
etc. This provides the advantages of:

– Taking into account predictions about the future moves of factors (for example, a
prediction that oil would exhibit high volatility in the next month).

– Using the long and frequent time series available for factors, as opposed to short-
time and infrequent (monthly) time series available for hedge funds.

– Estimating the joint risk of portfolios of hedge funds.

The most classical approach to relating hedge fund returns to risk factors is the
linear regression on a collection of factors. This is closely connected with the linear
hedge funds replication (see Fung and Hsieh [3], Hasanhodzic and Lo [7]). How-
ever, the findings of Hasanhodzic and Lo [7] show that such a method explains only
15–20% of the variance (i.e., risk) in hedge fund returns. One of the reasons is the
well-recognized nonlinearity in the dependence of hedge fund returns on the factors
(see Agarwal and Naik [1], Fung and Hsieh [4, 5], Lo [8]).

In order to capture this nonlinearity, one might take call and put options on factors
as additional factors, as is done in Agarwal and Naik [1]. However, the following
problem then arises. Hedge fund returns typically have quite a short observation his-
tory and are observed only on a monthly basis; thus, if a fund has a 2-year history,
then we have only two dozens of observations of its return. On the other hand, the
number of nonlinear factors might well exceed the number of observations, in which
case it is impossible to do the regression of the hedge fund return on all the nonlinear
factors due to overfitting. One way to overcome this problem is to extract from factors
only the most important ones and thus avoid overfitting. For example, Agarwal and
Naik [1] choose as the factors one index and four options on the index.

We propose another way to regress the return on a collection of nonlinear factors,
which allows us to leave all the linear factors and a reasonable number of options on
each of them. Let R denote the hedge fund return over a fixed time period (typically,
the monthly return) and F1, . . . ,FN be the returns/increments of factors over the same
time period. The methodology we propose consists of two steps:

1. Regress the return on the nonlinear functions of each single factor, i.e., for each
n = 1, . . . ,N , find the best approximation of R by a sum of the form

ϕn(Fn) = an + bnFn +
In∑

i=1

cnifni(Fn),

where fni is some set of nonlinear functions (for example, fni(x) = (x − Kni)
+).
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2. Join together the functions ϕ1(F1), . . . , ϕN(FN), taking into account the depen-
dence between the factors, to produce a nonlinear approximation of R by a func-
tion of all factors.

The methodology for Step 1 is clear: we perform simply a linear regression of R on a
factor and a family of nonlinear functions of the factor. The methodology for Step 2
is not obvious since different factors are dependent. Performing Step 2 is the main
objective of this paper.

1.2 Formulation

We formalize the above problem in the following way. We assume that we know the
conditional expectations

ϕn(x) = E[R | Fn = x], n = 1, . . . ,N

and want to recover the conditional expectation

ϕ(x1, . . . , xN) = E[R | F1 = x1, . . . ,FN = xN ].
To be more precise, the inputs we have are the joint law P of X1, . . . ,XN

1 and
functions ϕ1, . . . , ϕN from R to R. We want to find a function ϕ : R

N → R such that

E
[
ϕ(X1, . . . ,XN) | Xn

] = ϕn(Xn), n = 1, . . . ,N, (1.1)

where Xn denotes the nth coordinate projection of R
N on R and expectations are

taken with respect to P . This is the main problem we consider in the paper.
A reformulation of (1.1) is to recover a function ϕ : R

N → R if one knows its in-
tegrals over all the N hyperplanes orthogonal to the coordinate axes. This problem is
somehow similar to recovering a function from its Radon transform (which means the
knowledge of the integrals over all the one-dimensional lines in R

N ). However, there
exists a crucial difference between the two problems: knowing the Radon transform
is sufficient to recover the function, while knowing the integrals over hyperplanes
orthogonal to coordinate axes is far from being sufficient. As an example, consider
the situation where P is concentrated on a lattice {a1, . . . , aM}N . Then we have MN

unknown parameters, while (1.1) provides us only with NM equations. In another
example, if X1,X2 are independent standard Gaussian and ϕ(x1, x2) = x1x2, then
E[ϕ(X1,X2) | Xn] = 0, so that adding ϕ to any solution of (1.1) provides another
solution.

Thus, there is no hope to get a unique solution of (1.1) in any reasonable model.
On the other hand, for practical applications, one definitely needs to choose a unique
solution. So one has to impose additional conditions on the unknown function ϕ that
guarantee the uniqueness of a solution (at least, in reasonable models) and also allow

1One might wonder why we assume the knowledge of the joint law of (X1, . . . ,XN ) and do not assume
the knowledge of the joint law of (R,X1, . . . ,XN ) (if the latter is known, the whole problem disappears).
The reason is that factors have a long history of frequent observations, while hedge fund returns have a
short history of monthly observations.
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for an efficient procedure of calculating the solution (at least, in some models). In
this paper, we propose to look for the solution which is “the most moderate one” as
measured by its variance. In other words, we consider the problem

{
Minimize Varϕ(X1, . . . ,XN)

subject to E[ϕ(X1, . . . ,XN) | Xn] = ϕn(Xn), n = 1, . . . ,N,
(1.2)

where Var denotes the variance.

1.3 Solution

We first consider (1.2) in complete generality, i.e., for an arbitrary measure P . A nec-
essary condition for the existence of a solution is that all ϕn(Xn) have the same ex-
pectation. We impose this condition and assume without loss of generality that this
expectation is zero. The result we prove shows that in typical cases the solution exists,
is unique, and has the form

ϕ(x1, . . . , xN) =
N∑

n=1

ψn(xn)

with some functions ψn : R → R. In order to get explicit expressions for ψn, we are
then considering three particular cases (each corresponding to a quite wide class of
measures P ).

Our first example is the case when X1, . . . ,XN are independent. In this case the
solution of (1.2) has the form

ϕ(x1, . . . , xN) =
N∑

n=1

ϕn(xn).

However, this example is of theoretical interest only as in practice the factors are
always dependent.

The second particular case corresponds to a Gaussian P . Then the solution of (1.2)
is provided by

ϕ(x1, . . . , xN) =
N,∞∑

n,m=1

αnmHm(xn),

where the Hm are Hermite polynomials and the αnm are found through solving cer-
tain N -dimensional linear systems. In practical calculations, one cuts off the above
summation in m at some M ∈ N and then has to solve M such linear systems.

Finally, we consider the case when P is a Gaussian copula. Mathematically, this
is trivial because the problem is immediately reduced to the Gaussian case. But prac-
tically, this is very useful as Gaussian copulas are probably the most popular class of
models for the joint distribution of risk factors.
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1.4 Application

An important problem of modern risk measurement is to determine which part of the
portfolio risk is brought by each of the risk driving factors.2 Recent papers on the sub-
ject include the following. Cherny and Madan [2] consider the conditional expecta-
tion of the portfolio return/P&L with respect to the factor and call the risk of this new
random variable the factor risk brought by that factor. Martin and Tasche [10] also
consider the same conditional expectation, but then apply the Euler principle taking
the derivative of the portfolio risk in the direction of this conditional expectation and
call the result the risk impact. Rosen and Saunders [12] apply the Hoeffding decom-
position of the portfolio return/P&L with respect to a set of factors; the first several
terms of this decomposition coincide with the conditional expectations mentioned
above. However, each of the above approaches has certain problems coming from
the correlation between different factors. The factor risks or risk impacts brought by
different factors do not necessarily sum up to the overall risk; in particular, this sum
might be considerably smaller meaning that factor risks or risk impacts do not control
the overall risk (see Example 5.3 below). As for the Hoeffding decomposition, it has
2N terms, where N is the number of factors (N might be of order 100); one might try
to avoid this huge number by considering the first N terms and aggregating together
all the rest, but then the same problem as described above arises.

The methodology of this paper allows us to transform the conditional expecta-
tions of the return/P&L with respect to the factors to other nonlinear functions of the
factors in a way that takes into account the correlation between the factors and re-
sults in the best L2-approximation of the return/P&L by a sum of nonlinear functions
of single factors. This approach has some similarities with the work of Rosen and
Saunders [11], but the difference is that the authors of that paper consider the best
linear approximation of the return/P&L by the factors, while we are considering a
nonlinear one. As a result, we obtain a new definition of factor risks and provide a
new decomposition of portfolio risk into the sum of N + 2 parts (N is the number of
factors): N factor risks brought by each of the factors, the risk coming from nonlinear
cross-correlation between the factors, and the idiosyncratic risk.

1.5 Structure of the paper

In Sect. 2, problem (1.2) is studied for a general P . The three particular situations
described above are considered in Sect. 3. Section 4 deals with the extension to mul-
tidimensional factors. In Sect. 5, we propose a new definition of factor risks and
provide a new decomposition of the portfolio risk. Section 6 concludes.

2This is not to be confused with the problem of determining which part of the portfolio risk is brought by
each of the subportfolios.
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2 General setup

In this section, we study the problem (1.2) for an arbitrary measure P on R
N . Let us

set

Φ = {
(ϕ1, . . . , ϕN) : Eϕ2

n(Xn) < ∞ and Eϕn(Xn) = 0 ∀n = 1, . . . ,N
}
.

We denote by ‖ · ‖ the L2-norm and by PrE the orthogonal projection in the
L2(P )-sense on a space E.

We begin with a useful lemma, which sheds light on the structure of solutions.

Lemma 2.1 Let (ϕn) ∈ Φ . Suppose that ψn : R → R are measurable functions with
Eψ2

n(Xn) < ∞ such that the function

ϕ(x1, . . . , xN) =
N∑

n=1

ψn(xn) (2.1)

satisfies (1.1). Then ϕ is the unique solution of (1.2).

Proof Let ϕ̃ be a function satisfying (1.1). Denote

En = {
ξ ∈ L2 : ξ is Xn-measurable, Eξ = 0

}
, (2.2)

where L2 = L2(RN,P ) is the space of square-integrable random variables. Then
PrEn ϕ̃ = ϕn(Xn) = PrEn ϕ, where ϕ and ϕ̃ are considered as random variables on
(RN,P ). As ϕ ∈ E1 + · · · + EN (this is the space of sums ξ1 + · · · + ξN , where
ξn ∈ En), we get that ϕ̃ − ϕ is orthogonal to ϕ. This implies that ‖ϕ̃‖ ≥ ‖ϕ‖, and the
equality is possible only if ϕ̃ = ϕ P -a.s. �

The next theorem provides a condition on P ensuring the existence of a solution
for any (ϕn) ∈ Φ . It also shows that in this case the solution enjoys a number of nice
properties.

Theorem 2.2 The following conditions are equivalent:

(a) For any (ϕn) ∈ Φ , there exists a solution of (1.1).
(b) (Lower ellipticity) There exists a constant c > 0 such that, for any (ϕn) ∈ Φ ,

∥∥∥∥∥

N∑

n=1

ϕn(Xn)

∥∥∥∥∥ ≥ c

N∑

n=1

∥∥ϕn(Xn)
∥∥.

If the above conditions are satisfied, then
(c) (Existence, uniqueness, and form of the solution) For any (ϕn) ∈ Φ , there exists

a unique solution of (1.2), and it has the form (2.1) with some (ψn) ∈ Φ .
(d) (Linearity) If ϕ (resp. ϕ′) is a solution of (1.2) corresponding to (ϕn) ∈ Φ (resp.

(ϕ′
n) ∈ Φ), then the solution corresponding to (αϕn + α′ϕ′

n) is αϕ + α′ϕ′.
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(e) (Continuity) There exists a constant C > 0 such that, for any (ϕn) ∈ Φ ,

∥∥ϕ(X1, . . . ,XN)
∥∥ ≤ C

N∑

n=1

∥∥ϕn(Xn)
∥∥,

where ϕ is the solution of (1.2) corresponding to (ϕn).

The financial meaning of the linearity is as follows. If R denotes the return of a
portfolio, then the solution corresponding to a weighted average of several portfolios
is the weighted average of solutions. If R denotes the Profit&Loss of a portfolio,
then the solution corresponding to a sum of portfolios is the sum of solutions. This
property is very convenient in constructing an optimal portfolio of hedge funds, i.e.,
for the fund of funds problem.

The financial meaning of the continuity is that the solution is stable under small
misspecifications of the distributions Law(R,Xn) (for a fixed Law(X1, . . . ,XN)).

First, we prove an auxiliary lemma.

Lemma 2.3 Let H1, . . . ,HN be closed linear subspaces of a Hilbert space H . Sup-
pose that there exists a constant c > 0 such that, for any xn ∈ Hn,

∥∥∥∥∥

N∑

n=1

xn

∥∥∥∥∥ ≥ c

N∑

n=1

‖xn‖.

Then, for any x1 ∈ H1, . . . , xN ∈ HN , there exist y1 ∈ H1, . . . , yN ∈ HN such that
PrHn

∑
m ym = xn for any n.

Proof We prove this statement by induction in N . Let N = 2. Consider the sequence
(zk) ∈ H defined by z1 = x1,

zk+1 =
{

zk + x2 − PrH2 zk if k is odd,

zk + x1 − PrH1 zk if k is even.

Denote δk = zk − zk−1. Then

δk+1 = x2 − PrH2 zk = PrH2 zk−1 − PrH2 zk = −PrH2 δk if k is odd,

δk+1 = x1 − PrH1 zk = PrH1 zk−1 − PrH1 zk = −PrH1 δk if k is even.

It is easy to see that there exists γ < 1 such that ‖PrH1 z‖ ≤ γ ‖z‖ for any z ∈ H2
(indeed, otherwise we can find (un) ∈ H2 with ‖PrH1 un‖/‖un‖ → 1; then we ob-
tain ‖un − PrH1 un‖/(‖un‖+‖PrH1 un‖) → 0, which is a contradiction). Clearly, we
can choose γ < 1 such that we also have ‖PrH2 z‖ ≤ γ ‖z‖ for any z ∈ H1. Then
‖δk‖ ≤ γ ‖δk−1‖. This means that (zk) has a limit (z∞). As δk ∈ H1 for odd k and
δk ∈ H2 for even k, we see that z∞ is represented as y1 + y2 with yn ∈ Hn. It is clear
that y1, y2 satisfy the desired condition.

Suppose now that the statement is true for N − 1 and let us prove it for N . Denote
H̃1 = H1 + · · · + HN−1, H̃2 = HN . Then the pair (H̃1, H̃2) satisfies the conditions
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of the lemma. So, for the pair x̃1 = x1 + · · · + xN−1, x̃2 = xN , there exist ỹ1 ∈ H̃1
and ỹ2 ∈ H̃2 such that PrH̃1

(ỹ1 + ỹ2) = x̃1 and PrH̃2
(ỹ1 + ỹ2) = x̃2. We have x̃1 =

y1 + · · · + yN−1 with yn ∈ Hn. Then the collection y1, . . . , yN−1, ỹ2 satisfies the
desired conditions. �

Proof of Theorem 2.2 (b) ⇒ (a) This implication follows from the above lemma.
(a) ⇒ (c) Denote by E the L2-closure of E1 + · · · + EN , where En are given

by (2.2). Let ϕ be a solution of (1.1) corresponding to (ϕn). It is easy to see that the
set of all solutions of (1.1) consists of the functions ϕ̃ such that ϕ̃ −ϕ is orthogonal to
each En. In other words, the set of all solutions is ϕ+E⊥, where E⊥ is the orthogonal
complement to E. Now, it is clear that the solution of (1.2) exists, is unique, and is
given by PrE ϕ.

We shall prove the representation of the solution later.
(a) ⇒ (d) This property easily follows from the description of the solution pro-

vided above.
(a) ⇒ (e) Consider the space F = ∏

n En (i.e., F consists of collections
(ξ1, . . . , ξN)), where En are given by (2.2), endowed with the norm ‖(ξ1, . . . , ξN )‖ =
(
∑

n ‖ξn‖2)1/2. Let E be the same as above. Then the map

E � ξ 
−→ (PrE1 ξ, . . . ,PrEn ξ) ∈ F

is continuous (E is equipped with the L2-norm), one-to-one (if ξ, ξ ′ ∈ E have the
same projections on each En, then ξ − ξ ′ must be orthogonal to E, which is possible
only if ξ = ξ ′), and onto (due to (a)). Both E and F are Banach spaces. By the Banach
theorem, the inverse map is continuous. This is just what we need.

(a) ⇒ (b) Fix (ϕn) ∈ Φ with ‖ϕn(Xn)‖ = 1. Denote Gn = {xϕn(Xn) : x ∈ R},
G = {∑n xnϕn(Xn) : xn ∈ R}. Then, for any (x1, . . . , xN) ∈ R

N , there exists ξ ∈ L2

such that PrGn ξ = xnϕn(Xn) for any n. The same will be true for PrG ξ instead of ξ .
So, for any (x1, . . . , xN) ∈ R

N , we can find ξ ∈ G such that PrGn ξ = xnϕn(Xn) for
any n. The random variables ξ corresponding to different collections (x1, . . . , xN)

must be different because ‖ϕn(Xn)‖ = 1. This implies that G has dimension N , i.e.,
ϕ1(X1), . . . , ϕN(XN) are linearly independent.

Fix (x1, . . . , xN) ∈ R
N and find ξ ∈ L2 such that E[ξ | Xn] = xnϕn(Xn) for any n.

The projection PrG ξ can be represented as
∑

n ynϕn(Xn), and y1, . . . , yN are de-
termined uniquely due to the linear independence of ϕ1(X1), . . . , ϕN(XN). We then
have

PrGn

N∑

m=1

ymϕm(Xm) = xnϕn(Xn), n = 1, . . . ,N,

which means that
〈

N∑

m=1

ymϕm(Xm),ϕn(Xn)

〉
= xn, n = 1, . . . ,N,

where 〈·, ·〉 denotes the L2-scalar product. This means that the vectors x =
(x1, . . . , xN) and y = (y1, . . . , yN) are related by the equality Ay = x, where the
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matrix A is given by Anm = 〈ϕn(Xn),ϕm(Xm)〉. Using condition (c), which follows
from (a), we can write

〈
A−1x, x

〉1/2 = 〈y,Ay〉1/2 =
∥∥∥∥∥

N∑

n=1

ynϕn(Xn)

∥∥∥∥∥ ≤ ‖ξ‖

≤ C

N∑

n=1

∥∥xnϕn(Xn)
∥∥ = C

N∑

n=1

|xn| ≤ NC〈x, x〉1/2,

where the scalar product 〈x, y〉 for x, y ∈ R
N is defined as

∑
n xnyn. As the above

inequality is true for any x ∈ R
N , we see that all the eigenvalues of the matrix A−1

do not exceed N2C2. Hence, all the eigenvalues of A are greater than or equal
to N−2C−2. Finally, we get for any (x1, . . . , xN)

∥∥∥∥∥

N∑

n=1

xnϕn(Xn)

∥∥∥∥∥ = 〈x,Ax〉1/2 ≥ N−1C−1〈x, x〉1/2

≥ N−2C−1
N∑

n=1

|xn| = N−2C−1
N∑

n=1

∥∥xnϕn(Xn)
∥∥.

(a) ⇒ (c) It remains to prove that the solution has the form (2.1). For this, we note
that (a) implies (b), which, in turn, implies that the sum E1 + · · · + EN is L2-closed
(we are using the same notation as above). Hence, E = E1 + · · · + EN . As shown
above, any solution of (1.2) belongs to E. The proof is completed. �

Remark If X1, . . . ,XN are independent, then condition (b) of Theorem 2.2 is
clearly satisfied. More generally, if there exists a measure Q on R

N with in-
dependent marginals and a constant c such that c−1 ≤ dP/dQ ≤ c, then the
above condition is also satisfied since, for any random variable Z, we have
c−1/2‖Z‖Q ≤ ‖Z‖P ≤ c1/2‖Z‖Q, where ‖Z‖P (resp. ‖Z‖Q) denotes the
L2(P )-norm (resp. L2(Q)-norm).

We next provide examples illustrating situations when a solution does not exist.

Example 2.4

(i) Let N = 2, P be concentrated on the line {y = x}, and ϕ1(x) = x, ϕ2(x) = −x.
Then clearly there exists no solution of (1.2).

(ii) This is a non-degenerate example. Let N = 2 and P = 1
2 (P1 + P2), where P1

is the standard Gaussian distribution and P2 is the point mass concentrated at
zero. Let ϕ1(x) = I (x = 0), ϕ2(x) = −I (x = 0). If there exists a solution ϕ

of (1.1), then PrGn ϕ = ϕn(Xn), n = 1,2, where Gn = {xϕn(Xn) : x ∈ R}. But
this is impossible because ϕ1(X1) = −ϕ2(X2) P -a.s.

(iii) This is an example of P having a density. Let ξ1, ξ2 be independent random
variables, ξ1 having the density 1

2 exp{−|x|} and ξ2 being standard Gaussian.
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Let η1 = ξ1 + ξ2, η2 = ξ1 − ξ2, and P = Law(η1, η2). The density of P is given
by

p(x1, x2) = 1

4
√

2π
exp

{
−|x1 + x2|

2
− (x1 − x2)

2

8

}
.

It is easy to see from this expression that, for any ε > 0,

P
(|x1| > k, |x2| > k, |x2/x1 − 1| < ε

∣∣|x1| > k, |x2| > k
) 1−−−→

k→∞ .

Consider the functions

ϕk
1(x) = ckxI (|x| > k), ϕk

2(x) = −ckxI (|x| > k),

where ck are chosen so that ‖ϕk
n(Xn)‖ = 1. Then ‖ϕk

1(X1) + ϕk
2(X2)‖ → 0. So, con-

dition (b) of Theorem 2.2 is not satisfied, which means that, for some (ϕ1, ϕ2) ∈ Φ ,
there is no solution of (1.2) (actually, one can see that there is no solution for (ϕk

1 , ϕk
2)

with k being large enough).

This example shows that if P is “built” from measures with different heaviness of
the tail, then the solution might not exist.

3 Three particular cases

Throughout this section, we assume that Eϕn(Xn) = 0 and Eϕ2
n(Xn) < ∞ for any n.

3.1 Independent components

Suppose that X1, . . . ,XN are independent under P . It is clear from Lemma 2.1 that
the solution of (1.2) is given by

ϕ(x1, . . . , xN) =
N∑

n=1

ϕn(xn).

3.2 Gaussian distribution

Suppose that P is a Gaussian non-degenerate distribution. We assume that EXn = 0
and EX2

n = 1. This will slightly simplify the formulas and is sufficient for our appli-
cations. Indeed, the main application we have in mind is the Gaussian copula (next
subsection), and a non-degenerate Gaussian copula can always be transformed to
such a distribution.

Consider the Hermite polynomials Hm(x), m = 0,1,2, . . . . Recall that one way to
define them is as

Hm(x) = 1√
m!

∂m

∂am

∣∣∣∣
a=0

exp
{
ax − a2/2

}
, x ∈ R.
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For example,

H0(x) = 1,

H1(x) = x,

H2(x) = (
x2 − 1

)
/
√

2,

H3(x) = (
x3 − 3x

)
/
√

6.

Denote, for n = 1, . . . ,N,m ∈ N,

anm = E
[
ϕn(Xn)Hm(Xn)

] = 1√
2π

∫

R

ϕn(x)Hm(x)e−x2/2 dx. (3.1)

Denote by C the covariance matrix of (X1, . . . ,XN) and let Cm denote its mth com-
ponentwise power, i.e., Cm

kn is the mth power of Ckn. As follows from Lemma A.2,
each Cm is symmetric, positive definite, and non-degenerate. Hence, for each m ∈ N,
the vector

⎛

⎜⎜⎝

α1m

...

αNm

⎞

⎟⎟⎠ = (
Cm

)−1

⎛

⎜⎜⎝

a1m

...

aNm

⎞

⎟⎟⎠ (3.2)

is well defined.

Theorem 3.1 The solution of (1.2) is given by the L2-convergent series

ϕ(x1, . . . , xN) =
N,∞∑

n,m=1

αnmHm(xn), xn ∈ R. (3.3)

Proof Let us prove the L2-convergence of the series (3.3). The matrices Cm,m ∈ N,
are non-degenerate by Lemma A.2. As they converge to the identity matrix, there
exists μ > 0 such that

∥∥Cmx
∥∥ ≥ μ‖x‖, x ∈ R

N, m ∈ N,

where by ‖ · ‖ we denote the Euclidean norm. Then

N,∞∑

n,m=1

α2
nm ≤ μ−2

N,∞∑

n,m=1

a2
nm ≤

N∑

n=1

∥∥ϕn(Xn)
∥∥2

< ∞.

The second inequality follows from the orthonormality of (Hm(Xn))
∞
m=1 (which is

well known and follows, in particular, from Lemma A.1). As ‖Hm(Xn)‖ = 1, we get
the claim.

Let us prove that ϕ satisfies (1.1). Consider the spaces En given by (2.2). Then
(Hm(Xn))

∞
m=1 forms an orthonormal basis in En. Employing Lemma A.1, we can
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write

E[ϕ | Xn] = PrEn ϕ =
∞∑

m=1

〈
ϕ,Hm(Xn)

〉
Hm(Xn)

=
N,∞∑

k,m=1

αkm

〈
Hm(Xk),Hm(Xn)

〉
Hm(Xn)

=
N,∞∑

k,m=1

αkmCm
knHm(Xn)

=
∞∑

m=1

anmHm(Xn)

= ϕn(Xn), n = 1, . . . ,N.

An application of Lemma 2.1 completes the proof. �

As is well known, the Hermite polynomials result from orthogonalizing the system
of polynomials with respect to the Gaussian measure. Therefore, E[XM

n Hm(Xn)] = 0
for m > M . Consequently, if each ϕn is a polynomial of degree M , then anm = 0 for
m > M . Thus, we get

Corollary 3.2

(i) Suppose that

ϕn(x) = anx, n = 1, . . . ,N.

Set α = C−1a, where a = (a1, . . . , aN) (we are considering all vectors as col-
umn vectors). Then the solution of (1.2) is given by

ϕ(x1, . . . , xN) =
N∑

k=1

αnxn.

(ii) Suppose that

ϕn(x) = an

(
x2 − 1

)
, n = 1, . . . ,N.

Set α = (C2)−1a, where C2 is the componentwise square of C. Then the solution
of (1.2) is given by

ϕ(x1, . . . , xN) =
N∑

n=1

αn

(
x2
n − 1

)
.

(iii) Suppose that each ϕn is a polynomial of degree M . Then the solution of (1.2) is
given by (3.3) with the summation in m going up to M .
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Remark Let (R,X1, . . . ,XN) be a Gaussian random vector with ER = 0, EXn = 0,
EX2

n = 1. In this case, E[R | Xn] = anx, where an = ERXn, while

E[R | X1, . . . ,XN ] =
N∑

n=1

αnxn,

where α = C−1a and C is the correlation matrix of X1, . . . ,XN . This coincides
with the function provided by Corollary 3.2(i). In other words, in the case of jointly
Gaussian factors and hedge fund returns, our technique allows us to completely re-
cover the conditional expectation of the hedge fund return given the factors.

3.3 Gaussian copula

Suppose that P is a non-degenerate Gaussian copula, i.e., there exist a non-degenerate
Gaussian vector (X̃1, . . . , X̃N ) and increasing functions fn : R → R such that
P = Law(f1(X̃1), . . . , fN(X̃N)). We can arrange fn and X̃n in such a way that
EX̃n = 0 and EX̃2

n = 1 for any n.
Denote P̃ = Law(X̃1, . . . , X̃N ) and ϕ̃n = ϕn ◦ fn. Let ϕ̃ be the solution of the

problem based on P̃ and (ϕ̃n), which was provided in the previous subsection. Then
clearly, the function

ϕ(x1, . . . , xN) = ϕ̃
(
f −1

1 (x1), . . . , f
−1
N (xN)

)
, (3.4)

where f −1
n is the right-continuous inverse of fn, satisfies (1.1). As ϕ̃ is the sum of

functions of one variable, the same is true for ϕ. By Lemma 2.1, ϕ is the solution
of (1.2).

To sum up, the procedure for solving (1.2) consists of the following steps:

1. Estimate from data the distribution P = Law(X1, . . . ,XN) (assumed here to be a
Gaussian copula) and the conditional expectations ϕn(x) = E[R | Xn = x].

2. Find functions fn such that P = Law(f1(X̃1), . . . , fN(X̃N)), where (X̃1, . . . , X̃N )

is Gaussian with EX̃n = 0 and EX̃2
n = 1.

3. Fix a number M ∈ N (for example, 30) and determine the coefficients
(anm;n = 1, . . . ,N,m = 1, . . . ,M) given by (3.1) with Xn replaced by X̃n and
ϕn replaced by ϕ̃n = ϕn ◦ fn.

4. Find the values (αnm;n = 1, . . . ,N,m = 1, . . . ,M) by solving the linear sys-
tems (3.2) for m = 1, . . . ,M , where C is the covariance matrix of (X̃1, . . . , X̃N ).

5. Define the function ϕ̃ by (3.3) and find the function ϕ given by (3.4). This is the
desired solution.

4 Multidimensional factors

In this section, we consider the problem (1.2) for multidimensional Xn, i.e., we sup-
pose that Xn = (X1

n, . . . ,X
dN

N ) is a random vector (the dimensions dn are different for
different n). The practical motivation comes from the fact that some factors, like the
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price of oil, are inherently one-dimensional, while others, like different parts of the
yield curve, are inherently multidimensional. The considerations of Sect. 2 as well
as Sects. 3.1 and 3.3 admit a straightforward extension to multidimensional Xn. This
is not the case for Sect. 3.2, and the present section will deal with the corresponding
extension.

Thus, we assume that the vector (Xi
n : n = 1, . . . ,N, i = 1, . . . , dn) is Gaussian

and non-degenerate, and each ϕn : R
dn → R satisfies Eϕn(Xn) = 0 and

Eϕ2
n(Xn) < ∞.

4.1 Two factors

We first consider the case N = 2. Without loss of generality, d1 ≥ d2. We can rep-
resent each Xn as AnYn, where An is a non-degenerate dn × dn matrix and Yn has
a standard Gaussian distribution in R

dn , i.e., cov(Y i
n, Y

j
n ) = I (i = j). Let C denote

the covariance matrix between Y1 and Y2, i.e., Cij = cov(Y i
1, Y

j

2 ). According to the
singular value decomposition (SVD), there exist a d1 × d1 unitary matrix U1 and a
d2 × d2 unitary matrix U2 such that C = U1DUt

2 (“t” denotes the transpose) with
a d1 × d2 diagonal matrix D, i.e., Dij = 0 for i �= j . SVD is a standard numerical
tool (see [6]), and procedures for finding U1,U2 are implemented in most mathe-
matical packages, like MATLAB. Thus, Yn can be represented as Yn = UnZn (we
are considering all random vectors as column vectors), where Z1 = (Z1

1, . . . ,Z
d1
1 ),

Z2 = (Z1
2, . . . ,Z

d2
2 ) are jointly Gaussian vectors with cov(Zi

1,Z
j

2 ) = 0 for i �= j . As
Un is unitary and Yn has a standard Gaussian distribution, the same is true for Zn. As
a result, we can represent Xn as BnZn with Bn = AnUn.

Denote by Mn the space of non-zero multiindices of length dn, i.e., Mn consists
of collections (m(1), . . . ,m(dN)), where the m(i) take the values 0,1,2, . . . and at
least one m(i) is greater than zero. For m ∈ Mn, we consider the corresponding mul-
tidimensional Hermite polynomial

H̄m

(
z1, . . . , zdn

) = Hm(1)

(
z1) · · ·Hm(dn)

(
zdn

)
,

(
z1, . . . , zdn

) ∈ R
dn .

Consider the functions ϕ̃n(z) = ϕn(Bnz) and set

anm = 〈
ϕ̃n(Zn), H̄m(Zn)

〉
, n = 1,2, m ∈ Mn.

There exists a natural inclusion of M2 in M1; we informally write M2 ⊆ M1. For
m ∈ M2, we denote

ρm = (
ρ1)m(1) · · · (ρd2

)m(d2),

where ρi = cov(Zi
1,Z

i
2). For m ∈ M2, set

α1m = a1m − ρma2m

1 − (ρm)2
, α2m = a2m − ρma1m

1 − (ρm)2
.

For m ∈ M1 \ M2, we set α1m = a1m. Consider the function

ϕ̃(z1, z2) =
∑

m∈M1

α1mH̄m(z1) +
∑

m∈M2

α2mH̄m(z2), z1 ∈ R
d1 , z2 ∈ R

d2
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and let ϕ(x1, x2) = ϕ̃(B−1
1 x1,B

−1
2 x2).

Let us prove that ϕ is the desired solution of (1.2). To verify the L2-convergence
of the above series, note that the vector (Z1,Z2) is non-degenerate, and therefore,
there exists λ < 1 such that |ρi | ≤ λ for any i = 1, . . . , d2. Then |ρm| ≤ λ for any
m ∈ M2, which implies that |αnm| ≤ (1 − λ2)−1(|a1m| + |a2m|) for m ∈ M2. As
the system (H̄m(Xn))m∈Mn is orthonormal, we get

∑
m∈Mn

a2
nm < ∞, and hence,∑

m∈Mn
α2

nm < ∞.
Clearly, ‖H̄m(Zn)‖ = 1 for any m ∈ Mn and

〈
Hm1(Z1),Hm2(Z2)

〉 =
{

0 if m1 �= m2,

ρm2 if m1 = m2,

where the equality m1 = m2 means that m1(i) = m2(i) for i ≤ d2 and m1(i) = 0 for
i > d2. For m ∈ M1 \ M2, we have

〈
ϕ̃(Z1,Z2), H̄m(Z1)

〉 = α1m = a1m = 〈
ϕ̃1(Z1), H̄m(Z1)

〉
.

For m ∈ M2, we have
〈
ϕ̃(Z1,Z2), H̄m(Z1)

〉 = α1m + α2mρm = a1m = 〈
ϕ̃1(Z1), H̄m(Z1)

〉
.

As the system (H̄m(Z1))m∈M1 forms an orthonormal basis in the space E1 of
Z1-measurable square-integrable random variables with zero mean (see
[9, Chap. II, §2]), we see that PrE1 ϕ̃(Z1,Z2) = ϕ̃1(Z1). In other words,
E[ϕ̃(Z1,Z2) | Z1] = ϕ̃1(Z1), which means that E[ϕ(X1,X2) | X1] = ϕ1(X1). In the
same way, we prove that E[ϕ(X1,X2) | X2] = ϕ2(X2). Now, the multidimensional
analogue of Lemma 2.1 guarantees that ϕ is the desired solution.

4.2 Multiple factors

Consider now an arbitrary N . The solution of (1.2) will be constructed in a sequence
of steps. Without loss of generality, d1 ≥ · · · ≥ dN .

Step 1. Applying the above procedure to X̃1 = X1, X̃2 = X2, ϕ̃1 = ϕ1 and ϕ̃2 = ϕ,
we get a function ϕ12 : R

d1+d2 → R such that

E
[
ϕ12(X1,X2) | Xn

] = ϕn(Xn), n = 1,2.

Step 2. Applying the above procedure to X̃1 = (X1,X2), X̃2 = X3, ϕ̃1 = ϕ12 and
ϕ̃2 = ϕ3, we get a function ϕ123 : R

d1+d2+d3 → R such that

E
[
ϕ123(X1,X2,X3) | X1,X2

] = ϕ12(X1,X2),

E
[
ϕ123(X1,X2,X3) | X3

] = ϕ3(X3).

The first equality implies that

E
[
ϕ123(X1,X2,X3) | Xn

] = E
[
ϕ12(X1,X2) | Xn

] = ϕn(Xn), n = 1,2.

Proceeding in the same way, we construct the desired solution at the (N − 1)th
step.



390 A. Cherny et al.

5 Factor risks

Let R be the return/P&L of a portfolio over a certain time period and F1, . . . ,FN

the returns/increments of factors over the same period. We assume that ER2 < ∞.
Denote

P = Law(F1, . . . ,FN),

R̄ = R − ER,

ϕn(x) = E[R̄ | Fn = x],
η(x1, . . . , xN) = E[R̄ | F1 = x1, . . . ,FN = xN ].

Suppose that there exists a solution ϕ of (1.2) (clearly, it is unique up to
P -indistinguishability) and that it has the form

ϕ(x1, . . . , xN) =
N∑

n=1

ψn(xn), (5.1)

which is the typical situation, as discussed in Sect. 2. We assume that Eψn(Fn) = 0,
which ensures that the ψn are determined uniquely in typical situations.

Consider the decomposition

R = R0 + R1 + R2 + R3,

where

R0 = ER,

R1 = ϕ(F1, . . . ,FN),

R2 = η(F1, . . . ,FN) − ϕ(F1, . . . ,FN),

R3 = R̄ − η(F1, . . . ,FN).

Theorem 5.1

(i) We have

ϕ = argmin E
(
R̄ − ϕ̃(F1, . . . ,FN)

)2
,

where the minimum is taken over all the functions ϕ̃ which are sums of one-
dimensional functions of single variables.

(ii) The random variables R1,R2,R3 are uncorrelated.

Proof (i) Let

En = {
ξ ∈ L2 : ξ is Fn-measurable, Eξ = 0

}
,

and denote by E the L2-closure of E1 + · · · + EN . A function ϕ̃ satisfies (1.1) if and
only if PrEn ϕ̃(F1, . . . ,FN) = ϕn(Fn) for any n (here Pr is the L2-projection). This is
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the same as saying that PrEn ϕ̃(F1, . . . ,FN) = PrEn R̄ for any n. The latter property
is clearly equivalent to PrE ϕ̃(F1, . . . ,FN) = PrE R̄. Now, it is clear that the solution
of (1.2) satisfies

ϕ(F1, . . . ,FN) = PrE R̄,

from which (i) is obvious.
(ii) Consider the space

L = {
ξ ∈ L2 : ξ is (F1, . . . ,FN)-measurable, Eξ = 0

}
.

Then

η(F1, . . . ,FN) = PrL R̄,

so that

R1 = PrE R̄, R2 = PrL R̄ − PrE R̄, R3 = R̄ − PrL R̄.

As E ⊆ L, we get the desired statement. �

Thus, we obtain for R the L2-orthogonal decomposition

R = ER +
N∑

n=1

ψn(Fn) + R2 + R3.

Combining this with the well-known Euler principle, we are led to the following defi-
nition. Below ρ is a risk measure (e.g. standard deviation, V@R, TailV@R, coherent
risk, etc.). We also assume that the derivatives below exist.

Definition 5.2 The factor risks of R brought by the factors F1, . . . ,FN are defined as

ρn = d

dε

∣∣∣∣
ε=0

ρ
(
R + εψn(Fn)

)
, n = 1, . . . ,N.

The cross-term risk of R is defined as

ρC = d

dε

∣∣∣∣
ε=0

ρ
(
R + εR2).

The idiosyncratic risk of R is defined as

ρI = d

dε

∣∣∣∣
ε=0

ρ
(
R + εR3).

To avoid trivial complications, assume now that ER = 0. If ρ is homogeneous
(which is the case for all natural risk measures, in particular, those mentioned above),
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then in natural situations3

ρ(R) = d

dε

∣∣∣∣
ε=0

ρ(R + εR) =
N∑

n=1

ρn + ρC + ρI . (5.2)

Thus, the overall risk of the portfolio is typically the sum of the risks introduced in
Definition 5.2, i.e.,

Risk = Sum of factor risks + Cross-term risk + Idiosyncratic risk.

To conclude the section, let us compare the notion of the factor risk introduced
here with the ones introduced by Cherny and Madan [2] and Martin and Tasche [10].
According to the definition from [2], the factor risk of R brought by Fn is defined (in
the current notation) as ρ(ϕn(Fn)). The risk impact proposed in [10] is the derivative
d/dε|ε=0ρ(R + εϕn(Fn)) (to be more precise, the authors of [10] divide this quantity
by ρ(R), but this is not important for our discussion). The problem with both defin-
itions is that they do not account for the correlation between the factors, so that the
sum of factor risks thus defined might be substantially different (smaller or larger)
from the overall risk of the portfolio. The essence of the approach proposed here is
passing from the functions ϕn to the functions ψn, which accounts for the correlation
between the factors. The effect of that operation is seen from the example below.

Example 5.3 Suppose that F1,F2 are jointly Gaussian with EFn = 0, EF 2
n = 1 and

corr(F1,F2) = c. Let R = F1 + F2. If ρ is any reasonable risk measure (like stan-
dard deviation, V@R, TailV@R, or law invariant coherent risk), then there exists
a constant γ > 0 such that, for any centered Gaussian random variable ξ , we have
ρ(ξ) = γ σ(ξ), where σ denotes the standard deviation.

In this case, ρ(R) = γ σ(R). Furthermore, ϕn(x) = (1 + c)x,n = 1,2. So, for the
factor risk from [2], we have

ρ
(
ϕn(Fn)

) = γ (1 + c), n = 1,2.

For the risk impact from [10], we have (skipping some trivial calculations)

d

dε

∣∣∣∣
ε=0

ρ
(
R + ε(1 + c)Fn

) = γ σ(R)
1 + c

2
, n = 1,2.

If c is close to −1, then the risk of R is of order (1 + c)1/2, while the sum of factor
risks (resp. risk impacts) is of order 1 + c (resp. (1 + c)3/2); so in this case the sum
of factor risks or risk impacts is considerably smaller than the risk of R. If c is close
to 1, then the risk of R is close to 2γ , while the sum of factor risks or risk impacts is
close to 4γ ; so in this case the sum of factor risks or risk impacts is larger than the
risk of R, and this effect is strengthened further if we have multiple rather than two

3Of course, it is easy to provide more or less degenerate examples, in which this relation is violated, so we
are making no strict statement here.
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correlated factors. Thus, neither of the discussed definitions provides reliable results
in case of high (positive or negative) correlation between the factors.

On the other hand, the functions ψn given by (5.1) have the form ψn(x) = x,
n = 1,2, as follows from Corollary 3.2(i). Then the factor risks of Definition 5.2 are

ρn = d

dε

∣∣∣∣
ε=0

ρ(R + εFn) = γ σ(R)

2
, n = 1,2.

As a result, ρ(R) = γ σ(R) = ρ1 + ρ2, which is also clear from (5.2) since in this
example ρC = ρI = 0.

In this example, irrespectively of the correlation between the factors, the sum of
factor risks equals the risk of the portfolio. In the general situation, the equality might
not be true due to the existence of cross-term risk and idiosyncratic risk, but still the
sum of factor risks would provide a reasonable approximation to the overall risk,
while each factor risk would provide a reasonable estimate of the contribution of that
factor to the overall portfolio risk.

6 Conclusion

We propose a new methodology for estimating the risk of portfolios. It can be particu-
larly useful in cases when portfolios exhibit nonlinear dependence on the risk driving
factors and have scarce observations. This is typical for the case of hedge funds, so
that our results can be useful for estimating portfolios of hedge funds, which is the
fund of funds problem. Our methodology consists of two steps: first, performing a
nonlinear regression of the portfolio return on each of the risk driving factors and
second, joining the obtained nonlinear estimates together in a way that would capture
the dependence between the factors.

In this paper, we propose an approach to performing the second step, which con-
sists in solving a certain optimization problem. In the general setup, we provide a
necessary and sufficient condition for the existence and uniqueness of a solution.
Furthermore, we provide an explicit and numerically computable solution in the case
when the joint law of the factors is a Gaussian copula, which is a very popular model
in modern risk measurement.

The obtained results lead us to a new definition of factor risks (i.e., risks of a
portfolio brought by each of the factors), which takes into account both the nonlinear
dependence of the portfolio return on the factors and the correlation between the
factors. We also propose a new decomposition of the portfolio risk into an orthogonal
sum of factor risks, cross-term risk, and idiosyncratic risk.

Acknowledgements We express our thanks to three anonymous referees and the Associate Editor for
the very careful reading of the paper and a number of valuable comments and suggestions that led to
improving its quality.

Appendix

For completeness of exposition, we give here the proofs of some known facts from
probability and linear algebra.



394 A. Cherny et al.

Lemma A.1 Let X,Y be a jointly Gaussian vector with EX = EY = 0,
EX2 = EY 2 = 1 and E[XY ] = ρ. Then

〈
Hm(X),Hk(Y )

〉 =
{

0 if m �= k,

ρm if m = k.

Proof Write down the Taylor expansion

exp
{
ax − a2/2

} =
∞∑

m=0

Hm(x)
am

m! , a, x ∈ R.

Then

E
[
exp

{
aX − a2/2

}
exp

{
bY − b2/2

}] =
∞∑

m,k=0

E
[
Hm(X)Hk(Y )

]ambk

m!k! , a, b ∈ R.

On the other hand,

E
[
exp

{
aX − a2/2

}
exp

{
bY − b2/2

}]

= E exp
{
aX + bY − (

a2 + 2ρab + b2)/2 + ρab
}

= exp{ρab} =
∞∑

m=0

ρm ambm

m! , a, b ∈ R.

Equating the coefficients in the two series, we get the result. �

The next result goes back to Jacobi.

Lemma A.2 Let A,B be two symmetric positive definite non-degenerate
N -dimensional matrices. Then their componentwise product (AnkBnk)

N
n,k=1 has the

same properties.

Proof Consider independent N -dimensional Gaussian vectors X,Y with mean zero
and covariance matrices A,B , respectively. Then the covariance matrix of the vector
(X1Y1, . . . ,XNYN) is exactly the componentwise product of A and B . Thus, the
matrix is positive definite. To show its non-degeneracy, assume that there exists a
vector (a1, . . . , aN) such that

∑
n anXnYn = 0. We can find an equivalent measure Q

under which X,Y remain independent and have independent components. Then the
above equality holds Q-a.s., which implies that each anXnYn is degenerate under Q

and hence, under the original measure. As E[XnYn] = 0, we get anXnYn = 0, i.e.,
an = 0. �
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